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Research

Chronic exposures to airborne particulate 
matter (PM) are related to increased mortal-
ity as well as lung cancer, ischemic heart dis-
ease, dysrhythmias, heart failure, and cardiac 
arrest (Abbey et al. 1999; Dockery et al. 1993; 
Finkelstein et al. 2003; Jerrett et al. 2005; 
Miller et al. 2007; Pope et al. 1995, 2002, 
2004). These health effects have been shown 
for populations living near stationary ambient 
monitoring (SAM) sites and primarily and 
most consistently for exposure to PM with an 
aerodynamic diameter < 2.5 µm (PM2.5). It is 
possible that PM2.5, which originates from pri-
mary emissions from combustion sources and 
from secondary formation in the atmosphere, 
has different chronic health impacts than 
larger coarse particles (PM with aerodynamic 
diameters between 2.5 and 10 µm; PM10–2.5) 
because of their different composition. In con-
trast to PM2.5, PM10–2.5 is typically generated 
from mechanical grinding or crushing, as well 
as from windblown dust. The chronic health 
effects of PM10–2.5, however, have been little 
studied (Brunekreef and Forsberg 2005). 

Exposure assessment in chronic PM 
studies has been severely limited by the lack 
of ambient monitoring data for PM2.5 and 

especially PM10–2.5, which are sparse over 
both time and space, particularly for peri-
ods before 1999. Because of this lack of data, 
some epidemiologic studies of PM2.5 have 
restricted their health effect analyses to popu-
lations near SAM sites (Dockery et al. 1993; 
Miller et al. 2007), whereas others have esti-
mated exposures using concentrations aver-
aged across metropolitan areas (Pope et al. 
1995, 2002, 2004). Although this averaging 
may reduce instrument errors (and thereby 
classical exposure error), it ignores within-city 
spatial gradients in exposure, which can be 
substantial and may have important impli-
cations for health. For example, in a study 
conducted in Los Angeles, California, Jerrett 
et al. (2005) estimated chronic exposures, 
using PM2.5 data from one year (2000) and a 
spatial model that captured within-city spatial 
gradients, and showed that within-city gra-
dients in PM2.5 were more strongly related 
to health effects than between-city gradients. 
These results were consistent with those of 
Miller et al. (2007), who also found larger 
effects for within-city comparisons. It is possi-
ble that health effects associated with chronic 
PM2.5 exposure are even larger: Miller et al. 

(2007) and Jerrett et al. (2005) assumed that 
spatial gradients in PM2.5 were constant over 
time, a simplifying assumption that may lead 
to bias (Haneuse et al. 2007). 

To address these limitations, we estimated 
monthly PM2.5 and PM10–2.5 concentrations 
using spatiotemporal models that incorporated 
both small- and large-scale spatial trends, and 
that allowed these trends to change over time. 
These models were used to estimate PM2.5 and 
PM10–2.5 concentrations from 1988 through 
2002 for populations living within the north-
eastern and midwestern United States. 

Methods
We predicted highly time- and space-resolved 
PM2.5 concentrations across our study region 
using geographic information system (GIS)-
based spatiotemporal models of monthly 
PM2.5 concentrations. We did so for PM2.5  
by developing and validating two models: 
one for 1988–1998 (pre-1999) and another 
for 1999–2002 (post-1999). Both models 
build on the GIS-based spatiotemporal model 
we developed for PM with an aerodynamic 
diameter < 10 µm (PM10) (Yanosky et  al. 
2008) and use publicly available air pollution, 
geographic, and meteorologic data. The pre-
1999 model also used extinction coefficients 
derived from airport visibility data to predict 
location-specific outdoor PM2.5 concentra-
tions. For PM10–2.5, we estimated spatially 
resolved monthly values by difference using 
the PM2.5 models and our previously devel-
oped PM10 model. 

Data. PM2.5 and PM10–2.5 data. Outdoor 
PM2.5 concentration data from the north-
eastern and midwestern United States (the 
study region) were included in this analy-
sis (Figure 1). Data collected in states adja-
cent to the study region were also included 
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in the models to minimize boundary effects 
(Figure 1). PM2.5 data were obtained from the 
U.S. Environmental Protection Agency (EPA) 
Air Quality System (AQS) (U.S. EPA 2008); 
the Visibility Information Exchange Web 
System (2004) for Interagency Monitoring of 
Protected Visual Environments (IMPROVE), 
Stacked Filter Unit (a predecessor to 
IMPROVE), and Clean Air Status and Trends 
(CASTNet) networks; and Harvard research 
studies including the Twenty-four Cities 
Study and Five Cities Study (Spengler et al. 
1996; Suh et al. 1997). The U.S. EPA AQS 
network provided about 88% of the PM2.5 
concentration values and monitoring locations 
in the study region. Of the 546 monitoring 
locations, 386 were in the study region, with 
the remaining in adjacent states (Figure 1). 

Monthly average PM2.5 concentrations 
were approximately log-normally distributed, 
with geometric mean and geometric standard 
deviation of 13.0 µg/m3 and 1.5, respectively, 
across the study region. Measured PM10–2.5 
levels (estimated as the difference in measured 
monthly average PM10 and PM2.5 levels at 
co-located sites) were also approximately log-
normally distributed, with geometric mean and 
geometric standard deviation of 6.9 µg/m3 and 
2.44, respectively. 

Geographic, meteorologic, and visibility 
data. Characteristics of the PM monitoring 
sites were quantified using a GIS (ArcMap 9; 
ESRI, Redlands, CA), including the following:
•	Distance to nearest roadways for road classes 

A1 (primary roads, typically interstates, with 
limited access), A2 (primary major, non
interstate roads), A3 (smaller, secondary 
roads, usually with more than two lanes), and 
A4 (two-lane, typically surface roads used for 
local traffic) using ESRI StreetMap data;

•	Urban land use (the proportion of low-
intensity residential, high-intensity residential, 
and industrial/commercial/transportation land 
uses within 1 km) using data from the U.S. 
Geological Survey (USGS) National Land 
Cover Dataset (2004; Homer et al. 2004); 

•	Block group, tract, and county population 
density from the U.S. Census TIGER files 
from ESRI Data & Maps (ESRI); 

•	Point-source emissions of PM2.5 within circu-
lar buffers (1- and 10-km radii) and county-
level area-source PM2.5 emissions from the 
U.S. EPA National Emissions Inventory 
(U.S. EPA 2005); 

•	Elevation from the USGS National Elevation 
Dataset (USGS 2005). 

Monthly average temperature, wind speed, 
sea level–adjusted barometric pressure, and 
total precipitation were obtained from the 
National Climatic Data Center (2005) and 
spatially smoothed to the monitoring locations 
for each month. Additional details regarding 
these geographic and meteorologic covariates 
can be found in Yanosky et al. (2008). 

Extinction coefficients were estimated using 
daily airport visual range observations (Faulke 
and Husar 1998; Ozkaynak et al. 1985) after 
correction for relative humidity and trunca-
tion, spatially smoothed to monitoring and 
prediction locations, then averaged by month 
(Paciorek et al. 2008). 

Statistical models. To compensate for the 
spatially sparse PM2.5 measurements before 
1998, we constructed separate models for the 
pre-1999 and post-1999 time periods. Both 
models predicted PM2.5 concentrations using 
generalized additive mixed models (GAMMs), 
with bivariate penalized spline terms for space 
and one-dimensional penalized spline terms 
for GIS-based and meteorologic predictors. 

Post-1999 PM2.5 spatiotemporal model. 
The structure of the post-1999 PM2.5 model 
followed that for the PM10 model (Yanosky 
et al. 2008):

	 yi,t = a + d1(Xi,1)+...+dQ(Xi,Q)  
		  + g(si) + f1(Zi,t,1)+...+fP(Zi,t,P) 
		  + at + gt(si) + bi + ei,t ; 
		  bi ~N(0,σ2

b); ei,t  ~N(0,σ2
e,t),	 [1]

where yi,t is the natural log-transformed 
monthly average PM2.5 for i = 1…I, I = 499 
sites and t = 1…T, T = 48 monthly time peri-
ods from 1999 to 2002, and si the projected 
spatial coordinate pair for the ith location. 
The Albers Equal Area Conic USGS projec-
tion was used for all geographic data (ESRI). 
gt(si) accounts for residual monthly spatial 
variability and g(si) for time-invariant spatial 

variability. Zi,t,1 through Zi,t,P are time-vary-
ing covariates, Xi,1 through Xi,Q are time-
invariant GIS-based covariates, and at is a 
monthly intercept that controls for the mean 
across all sites. d1 through dQ and f1 through 
fP are one-dimensional penalized spline 
smooth functions for Q time-invariant and P 
time-varying covariates. Note that bi is a site-
specific random effect, hence our characteriza-
tion of the model as a GAMM. 

The post-1999 model was fit in two stages: 
the first to estimate site-specific terms adjust-
ing for time-varying covariates and residual 
spatial variability, and the second to model 
the site-specific terms using site-specific, time-
invariant GIS-based predictors and residual 
time-invariant spatial variability. The form of 
the two-stage model was

	 yi,t = ui + f1(Zi,t,1)+...+fP(Zi,t,P)  
		  + at + gt(si) + ei,t ; ei,t ~N(0,σ2

e,t)	 [2]

	 ûi = a + d1 (Xi,1)+...+dQ(Xi,Q)  
		  + g(si) + bi ; bi ~ N(0,σ2

b),	 [3]

where  ûi is an estimated site-specific intercept 
that represents the adjusted long-term mean 
at each location. 

The first stage (Equation 2) was fit itera-
tively in a back-fitting arrangement (Hastie 
and Tibshirani 1990) with ui + f1()…fp() esti-
mated jointly and at + gt (si) estimated sepa-
rately by month, such that variability in the 
concentrations is parsed between the covari-
ates and the residual spatial terms in the first 

Figure 1. Map of the PM2.5 monitoring locations in the study region and adjacent states for monitoring 
sites reporting data from 1988 to 1998 and separately from 1999 to 2002. The locations of weather stations 
reporting visual range are also shown. 
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stage. The second stage (Equation 3) was fit to 
the estimated site-specific ûi terms. Both stages 
were fit using calls to the gam() function (iter-
atively in the first stage) in the mgcv library of 
R (R Development Core Team 2008). Model 
predictions were obtained based on generating 
the covariates at locations of interest for each 
month and, once estimated, were transformed 
to the original scale by exponentiation. 

Pre-1999 PM2.5 spatiotemporal model. 
The pre-1999 model assumed a relatively sim-
ple spatiotemporal structure because of the 
sparseness of PM2.5 data during the earlier time 
period. Specifically, seasonal spatial trends were 
assumed to be constant across years using the 
natural log-transformed ratio of PM2.5 to pre-
dicted PM10, which was preferable to alterna-
tive transformations (log-transformed PM2.5, 
ratio of PM2.5 to PM10, and logit-transformed 
PM2.5 to PM10 ratio) based on results from our 
exploratory models. Thus, the model described 
variation in the log-transformed ratio of PM2.5 
to PM10, accounting for spatial and temporal 
variability in this ratio:
	 yi,t = a + d1(Xi,1)+...+dQ(Xi,Q) 
		  + g(si) + c(ẑ i,t) + d(b^exti,t) 
		  + f1(Zi,t,1)+...+fP(Zi,t,P) + aSeason 
		  + gSeason(si) + h(t) + bi + ei,t 

		  bi ~N(0,σ2
b); ei,t  ~N(0,σ2

e,Season),	 [4]

where yi,t = 1n(PM2.5 / P^M10) for i = 1…I, 
I = 546 sites and t = 1…T, T = 180 monthly 
time periods from 1988 to 2002, ẑ i,t 

is the 
predicted log PM10 concentration and b^exti,t is 
the predicted log extinction coefficient after 
correction for relative humidity and trunca-
tion. Season has four levels (winter, spring, 
summer, and fall); aSeason  is a season-specific 
intercept, and gSeason(si) accounts for residual 
seasonal spatial variability. h(t) is a smoothly 
varying intercept that controls for the monthly 
mean across all sites. Also, c and d are one-
dimensional penalized spline smooth func-
tions. Otherwise, the notation is the same as 
for the post-1999 model. 

The pre-1999 model was also fit in two 
stages:

	 yi,t = ui + c(ẑ i,t) + d(b^exti,t) 
		  + f1(Zi,t,1)+...+fP(Zi,t,P)  
		  + [aSeason + gSeason(si)] 
		  + h(t) + ei,t ; ei,t  ~N(0,σ2

e,Season)	 [5]

	 ûi = a + d1 (Xi,1)+...+dQ(Xi,Q)  
		  + g(si) + bi ; bi ~ N(0,σ2

b)	 [6]

We obtained model predictions based 
on generating the covariates at locations of 
interest for each month, transforming the 
predicted PM2.5 to PM10 ratio back to the 

original scale by exponentiation, and then 
multiplying by predicted PM10.

Covariate selection. Covariates that were 
expected a priori to have a physical influence 
on PM2.5 levels were considered for inclu-
sion in the post-1999 and pre-1999 models. 
Covariates remained in the model if their 
observed relationship with PM2.5 was con-
sistent with known pollutant behavior (i.e., 
if the smooth functions were generally in the 
expected direction, analogous to slopes in the 
expected direction for linear terms) and if their 
inclusion improved predictive performance. 
Nonlinearity in the covariate effects was 
accounted for using spline terms, with at most 
6 degrees of freedom considered sufficient to 
describe the general shape of each function. 

Using this procedure, we found several 
covariates to be important predictors in the 
post-1999 model, including distance to near-
est A1 (Figure 2A) and A2 roads, urban land 
use, point-source PM2.5 emissions within 
10 km, elevation (Figure 2A), wind speed, and 
precipitation. The covariate selection process 
contributed little to potential overfitting: The 
cross-validation R2 was comparable among 
locations used for the covariate selection pro-
cess and those held out from this process 
(0.75 vs. 0.77, respectively). Important PM2.5 
predictors for the pre-1999 model included 
predicted PM10 (from Yanosky et al. 2008), 
extinction coefficient (Figure 2B), wind 
speed, temperature (Figure 2B), precipitation, 
monthly time trend, distance to nearest A1 
road, urban land use, block group and county 
population density, and elevation. 

Model validation. We used cross-vali-
dation techniques both to inform covariate 
selection and to compare alternative model 
specifications. To evaluate the performance of 
the post-1999 model, we randomly selected 
monitoring sites from the 1999–2002 data and 
assigned them exclusively to 1 of 10 sets. Data 
from sets 1–9 (each set contains approximately 
10% of the data) were held out in turn, with 
predictions generated at the locations of the 
held-out observations. Because the covariate 
selection process involved fitting multiple can-
didate models to the same data, we used set 10 
to assess whether the covariate selection process 
contributed to overfitting, as reported above. 

Similarly, for the pre-1999 model, mon-
itoring sites from the 1988–1998 data were 
assigned exclusively to one of five sets at ran-
dom. Data from sets one through five were 
held out in turn, with predictions generated 
at the locations of the held-out observations. 
Because 1988–1998 data were not spatially rep-
resentative across the region, we performed a 
separate cross-validation step, where the pre-
1999 model was used to predict at the held-out 
locations during 1999. Data from 1999 for 
a select group of monitors were included in 
the model-fitting data set to ensure that the 

Figure 2. (A) Percent change in PM2.5 and PM10 as a function of distance to nearest interstate (A1 road) 
and elevation from the post-1999 PM2.5 model and the PM10 model presented by Yanosky et al. (2008), 
respectively. (B) Percent change in PM2.5 as a function of extinction coefficient and temperature from the 
pre-1999 PM2.5 model. 
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number of monitoring locations and their pop-
ulation density in 1999 was similar to that from 
1988–1998. Model overfitting due to covariate 
selection was not examined for the pre-1999 
model because of the limited amount of PM2.5 
data available between 1988 and 1998.

We determined the predictive abilities of 
the PM models using the squared Pearson cor-
relation between the held-out observations and 
the model predictions (cross-validation R2), 
with both on the original rather than the log 
scale. We calculated prediction errors by sub-
tracting held-out observations from the model 
predictions. Bias in model predictions was 
determined using the mean prediction error 
and the slopes from linear regression of the 
held-out values against the observations. We 
estimated the absolute precision of model pre-
dictions by taking the square root of the mean 
of the squared prediction errors (RMSPE), 
and relative precision by dividing the RMSPE 
by the arithmetic mean of the PM measure-
ments in the appropriate size category. Bias 
and absolute precision of predicted PM2.5 lev-
els from cross-validation were also evaluated 
by geographic location (state), urban land use 
and population density, season, monitoring 
network, and monitoring objective. 

To evaluate the ability of our models to 
predict PM10–2.5, we compared monthly pre-
dicted PM10–2.5 values with PM10–2.5 mea-
sured values at sites where PM2.5 and PM10 
monitors were co-located. We performed sep-
arate cross-validation procedures for PM10–2.5 
by again holding out co-located PM2.5 and 
PM10 sites in 10 sets. 

Sensitivity analyses. We compared the per-
formance of our model with monthly varying 
spatial surfaces with alternative models with 
either four seasonal spatial terms or 16 sea-
son by year spatial terms. A smoothly varying 
intercept, h(t), where t = 1,…, T, T = 180, was 
added to both alternative models to allow for 
monthly control for the mean across all sites. 

Additionally, we compared our post-1999 
model with two simple spatial interpolation 
approaches, inverse distance weighting (IDW) 

and nearest neighbor (NN) interpolation. 
For the IDW approach, we used the squared 
inverse distance as the weighting function. For 
the NN approach, we excluded monitors that 
were not within 50 km of another monitor. 

To evaluate the impact of the extinction 
coefficient term on the predictive ability of 
the pre-1999 model, we fit the model without 
this term. Additionally, we compared our pre-
1999 model with a simplistic ordinary least 
squares linear regression model that assumes 
a single, fixed PM2.5 to PM10 ratio over space 
and time:

	 yi,t = β0 + β1 exp(ẑ i,t)  
		  + ei,t ; ei,t ~N(0,σ2

e ),	 [7]

where yi,t is the monthly site average PM2.5 
and exp(ẑi,t) is the predicted PM10 concentra-
tion as in Equation 4. 

Data analysis. To evaluate the spatial het-
erogeneity in PM levels, we considered how 
PM levels at unmeasured locations (as best 
described by model predictions) differed on 
average from observed values by calculating 
mean squared deviations (MSDs) between 
PM levels measured at monitoring sites and 
PM levels predicted at unmeasured locations 
on an 8-km grid over the study region, doing 
this separately for PM2.5, PM10, and PM2.5–
10. Only monitoring sites that were within 
a metropolitan statistical area (MSA) and 
those in the AQS network with population 
exposure as their monitoring objective were 
included in this analysis. PM10 predictions 
were made using our previously developed 
model for PM10 (Yanosky et al. 2008). As an 
estimate of the amount of spatial variability at 
each distance relative to the total spatial vari-
ability at the regional scale, we divided MSDs 
at distances < 400 km by the median MSD at 
400 km for each pollutant. We then used the 
medians and 25th and 75th percentiles within 
10-km bins to describe trends in spatial vari-
ability as a function of distance (i.e., the vario-
gram). Only monthly predictions from 1999 
to 2002 for PM2.5, PM10, and PM10–2.5 were 

included in this analysis, because pre-1999 
PM2.5 predictions were based on predicted 
PM10 levels.

Results
We first present results describing the predic-
tive performance of the PM2.5 and PM10–2.5 
models. We then present results from our 
sensitivity analyses, comparing these PM2.5 
models to alternative models. Finally, we pres-
ent results from our evaluation of the spatial 
heterogeneity of PM2.5, PM10, and PM10–2.5 
levels across metropolitan areas. 

Model predictive performance. Model 
fit, cross-validation, and regression results for 
the post-1999 and pre-1999 PM2.5 models 
are presented in Table 1. Both PM2.5 mod-
els performed well. The post-1999 PM2.5 
model explained most of the variability in 
monthly measured PM2.5 levels (model fit R2 
= 0.87 and cross-validation R2 = 0.77). The 
pre-1999 PM2.5 model also performed well 
(cross-validation R2 = 0.68 and 0.69 using 
1988–1998 and 1999 cross-validation data, 
respectively). For both models, results from 
linear regression showed good agreement 
between measured values and model predic-
tions, with slopes near 1 and intercepts near 0. 

Both the post-1999 and pre-1999 PM2.5 
models predicted PM2.5 concentrations with lit-
tle bias (–0.2 and –0.3 µg/m3, respectively) and 
high absolute and relative precision (2.2 and 
2.7 µg/m3 and 16.7% and 15.4%, respectively). 
Both PM2.5 models performed well across the 
region and also in both rural and urban areas, 
although each had slightly better precision in 
spring and fall seasons compared with sum-
mer and winter [see Supplemental Material, 
Table 1 (online at http://www.ehponline.org/
members/2008/11692/suppl.pdf)]. 

Our PM2.5 models and our previous PM10 
model (Yanosky et al. 2008) relied on similar 
predictors, all including elevation, urban land 
use, distance to nearest A1 road, wind speed, 
and precipitation. Further, smooth functions 
of these predictors common to each model 
were generally similar in shape (Figure 2A). 

Table 1. Model fit, cross-validation, and regression results for the post-1999 and pre-1999 PM2.5 models. 

			   No. of	 Covariates	 CV results
Time period	 Model description	 CV data	 spatial termsa	 included	 Model fit R 2b	 Interceptc	 Slopec	 CV R 2

Post-1999 (1999–2002)	 Final model 	 1999–2002	 48 month by yeard	 Full set	 0.85	 0.8 ± 0.07	 0.95 ± 0.01	 0.77
	 Alternative season by year spatial terms	 1999–2002	 16 season by yeard	 Full set	 0.78	 0.3 ± 0.08	 1.00 ± 0.01	 0.72
	 Alternative seasonal spatial terms	 1999–2002	 4 seasonald	 Full set	 0.76	 0.5 ± 0.09	 0.99 ± 0.01	 0.68
	 IDW	 1999–2002	 None	 None	 —	 0.61 ± 0.11	 0.92 ± 0.01	 0.60
	 NN	 1999–2002e	 None	 None	 —	 3.0 ± 0.13	 0.77 ± 0.01	 0.61
Pre-1999 (1988–1998)	 Final model	 1988–1998f	 4 seasonald	 Full set	 0.76	 –0.4 ± 0.33	 1.05 ± 0.02	 0.68
		  1999g	 4 seasonald	 Full set	 0.76	 1.09 ± 0.22	 0.94 ± 0.02	 0.69
	 Final model without extinction coefficient	 1999g	 4 seasonald	 Full set minus	 0.76	 1.19 ± 0.21	 0.94 ± 0.02	 0.70
				    extinction coefficient
	 Alternative fixed ratio model	 1999g	 None	 None	 0.61	 1.5 ± 0.29	 0.85 ± 0.02	 0.53

CV, cross-validation. 
aCorresponds to the extent of control for space–time interaction in the model. bUsing data in the study region only. cPresented as parameter estimate ± SE from linear regression of held-
out observations on predictions. dNumber of time-varying spatial terms fit in the first stage of the model in addition to one spatial term fit in the second stage. eOnly 5,210 observations 
available for comparison versus 10,444 observations for other models; excluded monitors did not have another monitor within 50 km. fOne observation in Ohio and all observations from 
one site in New York excluded as outliers. gFour observations at one site in New York excluded as outliers.
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For example, PM2.5 and PM10 levels decreased 
similarly from 0 to about 250 m away from 
the nearest A1 road, indicating that this term 
captured micro-scale (0–100 m) and middle-
scale (100–250 m) gradients in PM2.5 and 
PM10 from traffic sources similarly. Beyond 
about 400  m, however, PM2.5 and PM10 
showed a slightly different relation with dis-
tance to A1 roads, as predicted PM10 levels 
decreased more quickly than PM2.5 levels. 
This modest difference is likely attributable to 
the greater relative contribution of secondary 
aerosols to PM2.5, resulting in a more homog-
enous spatial distribution of PM2.5 than PM10. 
These findings suggest that distance to A1 road 
described neighborhood-scale (500 m–4 km) 
and urban-scale (4–7 km) gradients slightly 
better for PM2.5 than for PM10. 

Our models performed less well in esti-
mating PM10–2.5 than PM2.5. With post-1999 
data, measured PM10–2.5 values were gener-
ally centered around the predicted PM10–2.5 
values (Figure 3A), with little proportional 
bias (slope of 1.14) and much of the vari-
ability in the measurements explained by the 
predictions (R2 = 0.64). From cross-validation 
(Figure 3B), predicted PM10–2.5 levels again 
exhibited little bias (slope = 0.89), but predic-
tive performance was poorer (cross-validation 
R2 of 0.39). The absolute and relative pre-
cision of predicted PM10–2.5 levels from 

cross-validation was relatively low (5.5 µg/m3 
and ± 61.5%, respectively). Predictive per-
formance for pre-1999 data was comparable 
with that for post-1999 data (cross-validation 
R2 = 0.33). 

Predictive performance of the PM models 
improved substantially when long-term, 
multiyear averages (rather than monthly 
averages) of measured PM levels and model 
predictions (one mean value per site for 
measurements and predictions) were com-
pared (cross-validation R2 = 0.81 and 0.75 
for post-1999 and pre-1999 PM2.5 models, 
respectively, and 0.63 and 0.65 for post-1999 
and pre-1999 PM10–2.5 excluding one site in 
northern Maine, respectively). These long-
term average results are for sites with at least 
39 of 48 months of valid data for the post-
1999 models, and at least 10 of 12 months of 
valid data (using 1999 cross-validation data) 
for the pre-1999 models. 

Sensitivity analyses. Model fit, cross-
validation, and regression results for alterna-
tive models are presented in Table 1. Our 
post-1999 and pre-1999 PM2.5 models were 
preferable to alternative models with differ-
ent spatiotemporal structures. The post-1999 
model with monthly spatial terms performed 
better than simpler models with four seasonal 
or 16 season by year spatial terms (Table 1; 
cross-validation R2 = 0.77 for the post-1999 

model vs. 0.68 and 0.72 for the alternative 
models, respectively), which demonstrates 
the improvement in predictive performance 
gained by modeling space–time interaction 
at the monthly rather than the seasonal level. 
Further, the post-1999 model performed bet-
ter than simple spatial interpolation methods 
(cross-validation R2 = 0.60 for IDW and 0.61 
for NN). With a matched data set, which 
addressed the fact that fewer data points were 
available for NN analysis (5,210 instead of 
10,444), the performance of our post-1999 
model performance remained high (cross-
validation R2 = 0.76) and was comparable 
with that across all observations. Additionally, 
the simple spatial interpolation methods 
exhibited greater proportional bias than the 
post-1999 model, as indicated by slopes from 
linear regression of 0.92 and 0.77 for IDW 
and NN, respectively, versus 0.95 for the 
post-1999 model (Table 1). 

Although the performance of the pre-1999 
model with the extinction coefficient term was 
highly comparable with that without (Table 
1; cross-validation R2 = 0.69 with extinction 
coefficient and 0.70 without, both using 1999 
cross-validation data), the extinction coeffi-
cient was included in the final model, as its 
smooth term indicated a nearly linear increase 
in PM2.5 levels with higher extinction coeffi
cients (Figure 2B), a result consistent with 
light extinction theory (Ozkaynak et al. 1985). 
However, likely because of the truncation in 
airport visibility data, the distribution of the 
extinction coefficients was quite narrow, with 
25th and 75th percentiles of 0.06 and 0.07 
km–1, respectively, leading to little predictive 
power in this covariate. We also noted con-
siderable changes in the seasonal smooth spa-
tial surfaces in pre-1999 PM2.5 models with 
and without the extinction coefficient term. 
This may explain the lack of improvement in 
predictive performance when extinction coef-
ficients were included in the model. 

The alternative pre-1999 model that 
assumed a fixed PM2.5 to PM10 ratio over 
time and space also exhibited lower predictive 

Figure 3. Scatter plot of monthly predicted versus measured PM10–2.5 concentrations in the northeastern and 
midwestern United States from 1999 to 2002 (A) including all measured locations and (B) from cross-validation. 
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performance than the pre-1999 model 
(Table  1; cross-validation R2 = 0.53 vs. 
0.69, respectively), which demonstrates the 
improvement in predictive performance from 
allowing spatial trends in the PM2.5 to PM10 
ratio to change seasonally and from account-
ing for temporal trends in this ratio. 

PM concentrations across the study 
region. Maps of the predicted PM2.5 con-
centrations averaged across all months from 
1988 to 1998 are shown in Figure 4A and 
from 1999 to 2002 in Figure 4B. Both maps 
show consistent spatial patterns, with pre-
dicted PM2.5 concentrations highest in eastern 
Ohio, Pennsylvania, and western Maryland 
and in urban areas such as New York City, 
New York, and Detroit, Michigan. Predicted 
PM2.5 levels are lowest in northern areas of 
Maine, New York, and Michigan. As shown 
in Figure 4C, mean predicted PM10–2.5 con-
centrations (1999–2002) have a substantially 
different spatial pattern, with considerably 
more spatial heterogeneity in PM10–2.5 levels 
compared with PM2.5. 

Spatial trends in predicted PM2.5 concen-
trations were relatively similar to those found 
for PM10 (Yanosky et al. 2008). However, 
PM2.5 concentrations were more spatially uni-
form compared with PM10 and especially with 
PM10–2.5. Figure 5 shows trends in the propor-
tion of local spatial variability relative to the 
total at 400 km as a function of the distance 
between PM monitoring locations and predic-
tion grid points for PM2.5, PM10, and PM10–
2.5. At distances < 75 km, this proportion was 
generally lower and less variable for PM2.5 than 
for PM10 or PM10–2.5 (Figure 5), consistent 
with the greater contribution of secondary par-
ticles (such as sulfate) for PM2.5 compared with 
PM10 or PM10–2.5 (Allen and Turner 2008). 

Despite this, at even moderately close dis-
tances (between 0 and 25 km) relative to the 
scale of a typical metropolitan area, PM2.5, 
PM10, and especially PM10–2.5 exhibited sub-
stantial spatial heterogeneity as evidenced 
by the sharp increase in the 75th percentiles 
(Figure 5) of the MSDx/MSD400, suggesting 
the importance of within-city gradients in PM 
levels. Further, these spatial gradients were 
larger for PM10 and PM10–2.5 than for PM2.5, 
as the 75th percentiles for PM10 and PM10–2.5 
increased more quickly than those for PM2.5, 
although medians for PM10 were only slightly 
higher than for PM2.5. Local, neighborhood-
scale spatial variability (MSD4 km) constituted 
7.8% of the total, regional scale variability 
(MSD400 km) for PM2.5, compared with 
15.8% and 35.1% for PM10 and PM10–2.5, 
respectively, corresponding to the values at 
the leftmost part of the x-axis in Figure 5. 
Additionally, using a standard sums of squares 
decomposition, the proportions of spatial, 
temporal, and spatiotemporal variability in 
predicted PM2.5 levels were 50%, 32%, and 

18%, respectively, compared with 41%, 23%, 
and 36% for PM10–2.5, respectively, indicat-
ing that monthly spatiotemporal changes are 
more important for PM10–2.5 than for PM2.5. 
Together, results indicate that PM2.5 levels 
were more spatially homogenous than PM10 
and especially PM10–2.5 levels. 

When these within-MSA population 
exposure monitoring sites were stratified by 
urbanization (above or below the median pro-
portion of urban land use within 1 km and 
county-level population density of the moni-
toring site), PM2.5, PM10, and PM10–2.5 levels 
were more spatially heterogeneous in highly 
urbanized areas compared with less urbanized 
areas. Further, the amount of spatial hetero-
geneity in PM levels varied by season, likely 
because PM2.5 represents a smaller proportion 
of PM10 in the spring and fall compared with 
winter and summer. In spring and fall, PM2.5 
concentrations were more spatially homoge-
neous than PM10 and especially PM10–2.5, as 
evidenced by seasonal variograms and by the 
number of degrees of freedom in the seasonal 
spatial terms of the pre-1999 PM2.5 model 
(38 and 5 for spring and fall, and 355 and 
303 for winter and summer, respectively). 
However, in winter and to a lesser extent sum-
mer, PM2.5 and PM10 exhibited similar levels 
of spatial variability, with both again less vari-
able than PM10–2.5. These results suggest that 
spatial variability in PM10 in summer and 

especially in winter is affected primarily by 
variability in PM2.5, likely because of winter 
wood smoke emissions and differing meteo-
rologic conditions across seasons. Results are 
consistent with greater mixing of the atmo-
sphere in nonwinter months, with increased 
formation of secondary particles in summer. 

Discussion 
By including location-specific covariates, our 
spatiotemporal models provide highly spatially 
and temporally resolved estimates of outdoor 
PM concentrations that can be used to esti-
mate chronic exposures to PM2.5 and, for the 
first time, to PM10–2.5 as well. Importantly, 
our models allow spatial trends in predicted 
monthly average PM2.5 and PM10–2.5 concen-
trations to change over time, and therefore are 
able to provide realistic, accurate, and precise 
monthly location-specific predictions of PM 
levels that may be used as measures of chronic 
exposure. These values can be averaged to pro-
vide exposure measures for different time peri-
ods relevant to chronic health impacts (e.g., 
previous month, previous 3 months, previ-
ous year). As demonstrated by their satisfac-
tory predictive ability, the models are able to 
predict PM2.5 and PM10–2.5 levels over large 
regions while maintaining within-city spatial 
gradients using location-specific covariates 
and spatial smoothing. We demonstrate for 
the first time a methodology for estimating 

Figure 5. The proportion of local spatial variability relative to the total (MSDx/MSD400) as a function of 
distance for PM2.5, PM10, and PM10–2.5 from 1999–2002 for AQS population exposure monitors within MSAs. 
Solid lines are medians and dotted lines are 25th and 75th percentiles. The inset shows the medians from 
0 to 40 km in greater detail.
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chronic exposures to ambient PM10–2.5 over 
long time periods and across the northeastern 
and midwestern United States. 

Our study represents a significant 
improvement over previous methods of esti-
mating long-term average ambient PM con-
centrations, including the nearest air pollutant 
monitor approach and citywide or county-
wide averaging. By using spatial smoothing 
to perform local spatial averaging, our models 
reduce the potential for measurement error in 
estimates of chronic exposure to ambient PM, 
as occurs with the nearest neighbor approach, 
while maintaining within-city spatial gradi-
ents. Our post-1999 PM2.5 model also pro-
vided improved performance and exhibited 
less proportional bias (i.e., regression slope 
closer to 1) than interpolation methods. 
However, given their relatively strong per-
formance and their simplicity, interpolation 
methods may be a reasonable alternative to 
more complicated spatiotemporal modeling 
of PM2.5 when resources are limited. 

Our approach to model PM2.5 concen-
trations separately by time period (post-
1999 and pre-1999) allowed monthly PM2.5 
concentrations to be predicted for 15 years, 
including years before 1999 when PM2.5 
data were extremely sparse. PM2.5 models 
for both time periods performed well by sea-
son and population density, as demonstrated 
using cross-validation techniques, albeit with 
slightly lower precision in some states and 
in winter and summer seasons. Results from 
both models demonstrated the importance 
of accounting for spatial variability, temporal 
variability, and location-specific covariates. 

Model and spatiotemporal structure 
differed substantially between the pre- and 
post-1999 models, however, because of dif-
ferences in the amount of available PM2.5 
monitoring data. The pre-1999 model 
used predicted PM10 levels from the model 
described by Yanosky et al. (2008) to estimate 
PM2.5 to PM10 ratios. Although temporal 
trends in these ratios were adjusted for, this 
model assumed a fixed spatial trend in the 
ratio across years for each season (e.g., spa-
tial trends in the ratio in winter 1988 were 
assumed to be the same as those in winter 
1989). This innovative modeling approach 
leveraged the available information on PM10, 
extinction coefficients, and available PM2.5 
data while allowing for spatially and tempo-
rally varying calibrations between PM2.5 and 
PM10 levels. In comparison, given the richer 
data set, the post-1999 PM2.5 model could 
rely on measured PM2.5 without PM10 and 
was more flexible, allowing spatial trends in 
PM2.5 to change monthly. 

Our models are similar in structure 
to land-use regression models in that they 
incorporate the effects of GIS-based predic-
tors. However, our models are distinct from 

typical land-use regression models in that 
they account for residual spatial variability 
using spatial smoothing and allow these spa-
tial surfaces to change over time. Further, 
because they do not involve spatial model-
ing, typical land-use regression analyses are 
only applicable for small regions (across a city 
or metropolitan area), whereas our model is 
applicable to much larger areas (i.e., the entire 
northeastern and midwestern United States). 
Results from our analyses showing the impor-
tance of GIS-based predictors were consistent 
with those of Brauer et al. (2003). There the 
authors used GIS-based predictors in mul-
tiple linear regression models (but not spatial 
smoothing techniques) to explain variability 
in annual PM2.5 concentrations in the three 
areas: the Netherlands; Munich, Germany; 
and Stockholm County, Sweden. Brauer et al.  
reported RMSPE values between 1.1 and 
1.6 µg/m3 for annual averages. Even though 
our models were based on monthly averages, 
included spatiotemporal modeling in addition 
to GIS predictors, and were applied to a larger 
domain (the northeastern and midwestern 
United States as opposed to three small areas 
in Europe), our model performance results 
were similar. We found only slightly higher 
RMSPE values of 2.2 and 2.7 µg/m3 for the 
post-1999 and pre-1999 models, respectively, 
for our monthly average PM2.5 predictions.

Predictive performance was lower for 
PM10–2.5 than for PM2.5 because a) fewer 
monitoring sites were available (only those 
with co-located PM10 and PM2.5 provide 
measured values), b) prediction errors were 
compounded by estimating PM10–2.5 by dif-
ference, and c) the PM10 model contained 
little highly spatially resolved information on 
PM10–2.5 sources, such as fugitive dust emis-
sions and unpaved roads. In addition, relative 
precision estimates were worse for PM10–2.5 
than for PM2.5 because typical PM10–2.5 con-
centrations are lower than those for PM2.5. 
However, predictive performance improved 
substantially when long-term, multiyear aver-
ages were considered.

Results from our analysis of the spatial 
heterogeneity of PM levels indicated that 
PM2.5 had the smallest amount of local spatial 
variability, followed by PM10, and finally by 
PM10–2.5. Further, they suggest that PM2.5 
measurements at a SAM site are more repre-
sentative for surrounding populations than 
for PM10, and more representative for PM10 
than for PM10–2.5. However, spatial variabil-
ity for the three pollutants increased nearly 
linearly at distances from 0 to about 50 km 
(though slightly less steeply between 25 and 
50 km), suggesting that there was no fixed 
distance within which PM concentrations 
were entirely uniform within a metropolitan 
area. Together, these results suggest that epi-
demiologic analyses that compare the effects 

of PM2.5 with PM10–2.5 using only measure-
ments at SAM sites as indicators of exposure 
should be interpreted with caution because of 
greater exposure prediction error for PM10–2.5 
than for PM10 or PM2.5 (Zeger et al. 2000).

Our modeling approach assumes iso
tropy and stationarity of the spatial surfaces, 
normality and homoscedasticity of residu-
als, independence of the time-varying spa-
tial terms, uniform effects of GIS-based and 
meteorologic covariates across space, and no 
interactions of these covariates; see Paciorek 
et al. (2008) for evidence supporting these 
simplifying assumptions.

The satisfactory performance of our two 
models demonstrates their suitability for esti-
mating long-term average population exposures 
to ambient PM concentrations. These models 
have the potential to reduce exposure measure-
ment error in air pollution health effect studies. 
We are currently using these models to esti-
mate chronic PM2.5 and PM10–2.5 exposures in 
the Nurses' Health Study, a large prospective 
cohort study of U.S. women, to examine the 
chronic health impacts of these pollutants. 
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